segunda-feira, 7 de setembro de 2020



ESTADOS DE ENERGIAS  QUÂNTICO DE GRACELI.

se tem sensibilidades térmicas diferentes conforme os tipos de materiais e tipos de energias que são empregadas, provando assim que os estados de energias e quântico variam conforme são empregadas tipos diferenciados de energias.


ou seja, com amesma temperatura se tem sensibilidades variadas conforme esta temperaura foi produzida sobre um esmo material.

e o mesmo acorre sobre materiais diferenciados.

ou seja, estados de energias variados em mesmos materiais, e também em materiais diferenciados.
X


TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI

TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.




FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

X
 [ESTADO QUÂNTICO]




Espaço de fases ou espaço fásico é definido como o espaço formado pelas posições generalizadas e seus momentos conjugados correspondentes. Se emprega no contexto da mecânica lagrangiana e a mecânica hamiltoniana. Usualmente se designa o espaço fásico ou uma parte dele por Γ (gamma maiúscula). Fisicamente cada ponto do espaço fásico representa um possível estado do sistema mecânico.
Em física estatística se usam distribuições de probabilidade definidas sobre o espaço fásico. Partindo de certo subconjunto das distribuições de probabilidade de um espaço fásico pode construir-se uma estrutura de espaço de Hilbert. Estes espaços de Hilbert de um sistema clássico são a base para os espaços de Hilbert que aparecem na mecânica quântica.


Espaço de fases na mecânica clássica[editar | editar código-fonte]

Em mecânica clássica o espaço de fases é uma construção matemática a partir do espaço de configuração. Concretamente um espaço de fases adequado para um sistema com um número finito de graus de libertade é um fibrado tangente do espaço de configuração do sistema mecânico. Esse fibrado tangente construído dessa maneira pode ainda ser dotado de uma topologia simplética onde podem formular-se convenientemente os teoremas da mecânica hamiltoniana.
Um dos teoremas clássicos sobre espaços de fases é o teorema de Liouville, segundo o qual uma nuvem de pontos distribuídos de acordo com uma densidade de probabilidade que represente um estado de equilíbrio macroscópico ρ(pi,qi) deve ser invariável no tempo.
Além disto cada hamiltoniano H definido sobre um espaço de fases está associado a um conjunto de trajetórias de evolução temporal. O conjunto de trajetórias constitui uma foliação unidimensional do espaço de fases que recobre quase todo o espaço de fases (concretamente todo o espaço de fases, salvo um conjunto de medida nula), este último equivale a que o espaço pode ser descomposto em trajetórias que não se intersectam.

Espaço de fases em mecânica quântica[editar | editar código-fonte]

Uma das características distintas da mecânica quântica é que o estado físico de um sistema não determina o resultado de qualquer medida que possa fazer-se sobre ele. Em termos mais simples, o resultado de uma medida sobre dois sistemas quânticos que tenham o mesmo estado físico nem sempre resulta nos mesmos resultados. Assim uma teoria como a mecânica quântica que trata de descrever a evolução temporal dos sistemas físicos só pode prever a probabilidade de que ao medir uma determinada grandeza física se obtenha determinado valor. Isto quer dizer que a mecânica quântica realmente é uma teoria que explica como varia a distribuição de probabilidade das possíveis medidas de um sistema (entre duas medições consecutivas, já que no instante da medida se produz um colapso da função de onda aleatório).
estado quântico de um sistema pelas razões anteriormente expostas não se parece em nada ao estado clássico de uma partícula ou um sistema de partículas. De fato o estado quântico de um sistema é representável mediante uma função de onda:
]X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


A relação mais próxima entre espaço fásico e função de onda é que o quadrado do módulo da função de onda está relacionado com uma distribuição de probabilidade definida sobre o espaço fásico. Isto significa que, para construir o conjunto de estados quânticos ou espaço de Hilbert de certos sistemas quânticos, pode considerar-se inicialmente o espaço fásico que se usaria em sua descrição clássica e considerar o conjunto de funções de quadrado integrável sobre o espaço fásico, a este tipo de procedimento se conhece como quantização.




Na mecânica clássica, a função de Lagrangelagrangiana (português brasileiro) ou lagrangiano (português europeu) () de um sistema é uma função expressa em termos das coordenadas generalizadas , da taxa de variação dessas coordenadas (velocidades generalizadas e do tempo t, e dada matematicamente pela diferença entre a energia cinética () e a energia potencial generalizada () do sistema:
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


.[Ref. 1][Ref. 2][Ref. 3]
Por padrão a energia potencial é função apenas das coordenadas generalizadas (sistemas conservativos) e/ou do tempo, contudo, a exemplo do que observa-se para o caso eletromagnético, quando na forma adequada, admite-se o uso de um potencial "generalizado", esse função também das velocidades generalizadas. O potencial eletromagnético generalizado[1][Ref. 3] permite a descrição de partículas elétricas imersas em campos eletromagnéticos via Mecânica de Lagrange, a exemplo. Forças dissipativas proporcionais às velocidades generalizadas também são admissíveis via potenciais dissipativos, a exemplo o potencial dissipativo de Rayleigh.[2][3] [Ref. 3]
A lagrangiana é termo central na integral temporal que define o que se denomina em Física por ação. Diferente da Mecânica de Newton, junto com o princípio de Hamilton da ação em extremo, a lagrangiana e a Mecânica de Lagrange definem toda a dinâmica de um sistema sem recorrer a vetores e diagramas vetoriais, fazendo-o de forma a usar essencialmente funções escalares. Nesses termos a lagrangiana porta-se como uma equação fundamental do sistema a qual associa-se, encerrando em si todas as informações acerca do sistema. Pode-se pois, a partir dela e do formalismo atrelado à Mecânica de Lagrange, obter qualquer informação desejada acerca do sistema. A lagrangiana possui dimensões de energiajoules no S.I..[Ref. 1][Ref. 2][Ref. 3]
Associado à lagrangiana de um sistema, via Transformada de Legendre, tem-se o hamiltoniano  do sistema, essa uma função das coordenadas generalizadas , dos momentos conjugados generalizados  e do tempo t. O Hamiltoniano , definido por H = T + U, também caracteriza uma equação fundamental, e juntamente com o formalismo da Mecânica de Hamilton, constitui formalismo alternativo plenamente equivalente ao de Lagrange no que tange à descrição da dinâmica do sistema.[Ref. 2] Tais formalismos encontram importante aplicação também dentro da relatividade.[Ref. 4]
Embora amplamente aplicada ao campo da dinâmica de energia e matéria, o cálculo variacional não limita o raciocínio à campos específicos da Física. Diversos problemas nas mais variadas áreas mostram-se suscetíveis ao tratamento similar.


Exemplos[editar | editar código-fonte]

Mecânica[editar | editar código-fonte]

Partícula livre
Uma partícula livre move-se em ausência de força resultante, idealmente em ausência de força aplicada. Logo sua lagrangiana define-se apenas por sua energia cinética em caso limite.
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


onde, conforme convenção,  
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


e assim por diante.
Para movimento confinado ao plano xy, e em coordenadas polares:
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


de onde, derivando-se:
Quadrando-se as velocidades generalizadas e com o auxílio de algumas relações trigonométricas tem-se pois que:
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Máquina de Atwood
Máquina de Atwood. No texto, x corresponde à distância da massa da esquerda (massa M1) até a linha horizontal que passa pelo centro do disco. A altura da massa M2 é l-x, onde l representa tamanho total de corda em suspensão.
Na máquina de Atwood, considerando g a aceleração da gravidade, M1 a massa da esquerda e M2 a massa da direita, a energia potencial do sistema escreve-se:
 ,
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


uma vez adotado o nível de referência como sendo uma linha horizontal a passar pelo centro do disco. Nessa situação x e y representam os tamanhos em suspensão da corda que sustentam respectivamente as massas M1 e M2.
Há um vínculo entre x e y de tal forma que  é uma constante, o tamanho total de corda em suspensão. Nesses termos, basta uma coordenada generalizada para descrever-se o problema, à escolha, x, e reescreve-se a energia potencial gravitacional como:
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Em uma máquina de Atwood ideal a polia e a corda têm massas desprezíveis se comparadas às massas M1 e M2. Nesse caso a energia cinética total se escreve:
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


e a função de Lagrange escreve-se:
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


que encerra em si toda informação necessária ao cálculo da dinâmica do sistema.
Seguindo-se com o formalismo de Lagrange, tem-se que a equação de movimento deve satisfazer à equação de Lagrange:
 .
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Neste caso há apenas uma coordenada generalizada, qi = x. Determinando-se as derivadas tem-se:
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Levando os resultados à equação de Lagrange tem-se a equação diferencial para o sistema:
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


onde a é a aceleração das massas. Tal equação é análoga à obtida via aplicações diretas da lei de Newton conforme descrito em artigo específico, conforme esperado.
A equação horária para x obtém-se com facilidade doravante mediante integração, sendo a resposta análoga à de um movimento retilíneo uniformemente variado com aceleração constante :
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


com  e  correspondendo a constantes, respectivamente o comprimento em suspensão inicial da corda para a massa M1 e a velocidade descendente inicial (no sentido de x crescente) da massa M1, determinados no instante em que zera-se o tempo (t=0s).




teorema de Liouville é um resultado da mecânica hamiltoniana sobre a evolução temporal de um sistema mecânico. Considera-se um conjunto de partículas com condições iniciais próximas que podem ser representadas no espaço de fases por uma região conexa, a qual, apesar de se expandir e contrair a medida que cada partícula evolua, manterá invariante seu volume.
Há também resultados matemáticos relacionados em topologia simplética e teoria ergódica.
Consideremos uma região do espaço fásico que evolua com o tempo ao deslocar-se sobre sua trajetória. Cada um de seus pontos transforma-se ao longo do tempo em uma região de localizada forma diferente, a qual se situa em outra parte do espaço fásico. O teorema de Liouville afirma que, apesar da translação e a alteração de forma, o "volume" total desta região permanecerá invariante. Além disso, devido à continuidade da evolução temporal, se a região for conexa inicialmente, seguirá sendo conexa todo o tempo.
Quase todas as demostrações usam o fato de que a evolução temporal de uma "nuvem" de pontos no espaço fásico é de fato uma transformação canônica que alterará a forma e posição de tal nuvem, ainda que mantenha seu volume total.


Demonstração direta[editar | editar código-fonte]

Uma forma de ver provada que a evolução temporal é uma transformação canônica, fato relativamente perceptível, e a partir daí calcular diretamente o determinante de tal alteração de coordenadas, é provar que de fato o determinante de tal transformação é igual a 1, o qual prova a invariância do volume.

Demonstração baseada na forma simplética[editar | editar código-fonte]

Outra forma de provar o teorema é ter em conta que a forma de volume  do espaço fásico é o n-ésimo produto da forma simplética, e que está de acordo com o teorema de Darboux, expressando-se como produto de pares de variáveis canonicamente conjugadas:

X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


De onde segue que o determinante da transformação é igual a 1 e, portanto:
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Essa última expressão é essencialmente o enunciado do teorema de Liouville.

Equação de Liouville[editar | editar código-fonte]

O teorema de Liouville pode ser reescrito em termos do colchete de Poisson. Essa forma alternativa, conhecida como equação de Liouville, vem a ser dada por:
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


ou em termos do operador de Liouville, também chamado "Liouvilliano":
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


que leva à forma:
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Mecânica quântica[editar | editar código-fonte]

Em mecânica quântica existe um resultado análogo ao teorema de Liouville que descreve a evolução de um estado misto. De fato, pode-se chegar à versão mecânico-quântica deste resultado mediante a simples quantização canônica. Aplicando esse procedimento formal, chegamos ao análogo quântico do teorema de Liouville:
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Onde ρ é a matriz densidade. Quando se aplica o resultado ao valor esperado de um observável, a correspondente equação dada pelo teorema de Ehrenfest toma a forma:
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Onde  é um observável.




física estatística é o ramo da física que usa métodos da teoria das probabilidades e estatística e, particularmente, as ferramentas matemáticas para lidar com grandes populações e aproximações, na solução de problemas físicos. Pode descrever uma grande variedade de campos com uma natureza inerentemente estocástica. Suas aplicações incluem muitos problemas nos campos da física, biologiaquímicaneurologia e até mesmo em algumas ciências sociais, como a sociologia. Seu principal objetivo é esclarecer as propriedades da matéria sob conjuntos, em termos de leis físicas que regem o movimento atômico.[1]
Em particular, a mecânica estatística desenvolve os resultados fenomenológicos da termodinâmica a partir de uma análise probabilística dos sistemas de base microscópica. Historicamente, um dos primeiros tópicos da física onde foram aplicados métodos estatísticos foi o campo da mecânica, que se preocupa com o movimento de partículas ou objetos quando submetidos a uma força.


Mecânica estatística[editar | editar código-fonte]

Ver artigo principal: Mecânica estatística
mecânica estatística fornece um quadro que relaciona as propriedades microscópicas de átomos e moléculas com as propriedades macroscópicas ou extensivas de materiais que podem ser observados na vida cotidiana. Portanto, ela explica a termodinâmica como um resultado natural da estatística, mecânica clássica e mecânica quântica ao nível microscópico. Por causa desta história, a física estatística é muitas vezes considerada como sinônimo de mecânica estatística ou termodinâmica estatística.
Uma das equações mais importantes da mecânica estatística (análogo à F = ma em mecânica, ou a equação de Schrödinger na mecânica quântica) é a definição da função de partição Z, que é essencialmente uma soma ponderada de todos os possíveis estados q disponíveis para um sistema .
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 

V

onde  é a constante de BoltzmannT é a temperatura e E(q) é a energia do estado q. Além disso, a probabilidade de um determinado estado q ocorrer é dada por
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Aqui, vemos que os estados de energia muito alta têm pouca probabilidade de ocorrência, um resultado que é consistente com a intuição.
A abordagem estatística pode funcionar bem em sistemas clássicos quando o número de graus de liberdade (e assim o número de variáveis​​) é tão grande que a solução exata não é possível, ou não é realmente útil. A mecânica estatística também pode descrever o trabalho na dinâmica não-linearteoria do caosfísica térmicadinâmica dos fluidos (particularmente nos números de Knudsen elevados) e física de plasmas.
Embora alguns problemas em física estatística possam ser resolvidos analiticamente por meio de aproximações e expansões, as pesquisas mais atuais utilizam o poder de processamento de computadores modernos para simular ou aproximar soluções. Uma abordagem comum para problemas estatísticos é usar uma simulação de Monte Carlo para produzir uma ideia da dinâmica de um sistema complexo.



Como os plasmas são muito bons condutores, os potenciais elétricos têm um papel importante. O potencial médio que existe no espaço entre partículas carregadas, independentemente da questão de como ele pode ser medido, é chamado de "potencial de plasma" ou "potencial do espaço". Se um eletrodo é inserido em um plasma, o seu potencial em geral ficará consideravelmente abaixo do potencial do plasma, devido à chamada bainha de Debye. A boa condutividade elétrica dos plasmas faz com que os seus campos elétricos sejam muito pequenos. Disso resulta o importante conceito de "quase neutralidade", que diz que a densidade das cargas negativas é aproximadamente igual à das cargas positivas para grandes volumes de plasma (ne = <Z>ni), mas na escala do comprimento de Debye pode haver desequilíbrio de cargas. No caso especial em que camadas duplas são formadas, a separação das cargas pode se estender por algumas dezenas de comprimentos de Debye.
A magnitude dos potenciais e campos elétricos pode ser determinada por outros meios do que simplesmente encontrando-se a densidade de carga resultante. Um exemplo comum é assumir que os elétrons satisfazem a relação de Boltzmann:
.
X
V


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Diferenciando-se esta relação, obtém-se um meio para calcular o campo elétrico a partir da densidade:
.
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


É possível produzir um plasma que não seja quase neutro. Um feixe de elétrons, por exemplo, só tem cargas negativas. A densidade de um plasma não neutro deve geralmente ser muito baixa, pois de outra forma ele será dissipado pela força eletrostática de repulsão.
Em plasmas astrofísicos, a triagem Debye (atenuação do campo elétrico provocada pela presença de portadores de carga móveis) impede que os campos elétricos afetem diretamente o plasma por grandes distâncias, isto é, maiores do que o comprimento de Debye. Mas a existência de partículas carregadas faz com que o plasma gere e seja afetado por campos magnéticos. Isto pode causar (e efetivamente causa) um comportamento extremamente complexo, como a geração de camadas duplas no plasma, um objeto que separa as cargas por algumas dezenas de comprimentos de Debye. A dinâmica de plasmas interagindo com campos magnéticos externos e auto-gerados é estudada na disciplina acadêmica de magnetoidrodinâmica.