ESTADOS DE ENERGIAS QUÂNTICO DE GRACELI.
se tem sensibilidades térmicas diferentes conforme os tipos de materiais e tipos de energias que são empregadas, provando assim que os estados de energias e quântico variam conforme são empregadas tipos diferenciados de energias.
ou seja, com amesma temperatura se tem sensibilidades variadas conforme esta temperaura foi produzida sobre um esmo material.
e o mesmo acorre sobre materiais diferenciados.
ou seja, estados de energias variados em mesmos materiais, e também em materiais diferenciados.
se tem sensibilidades térmicas diferentes conforme os tipos de materiais e tipos de energias que são empregadas, provando assim que os estados de energias e quântico variam conforme são empregadas tipos diferenciados de energias.
ou seja, com amesma temperatura se tem sensibilidades variadas conforme esta temperaura foi produzida sobre um esmo material.
e o mesmo acorre sobre materiais diferenciados.
ou seja, estados de energias variados em mesmos materiais, e também em materiais diferenciados.
X
TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI
TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.
FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA.
[EQUAÇÃO DE DIRAC].
+ FUNÇÃO DE RADIOATIVIDADE
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ ENTROPIA REVERSÍVEL
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
ENERGIA DE PLANCK
X
-
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
ΤDCG
X
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
sistema de dez dimensões de Graceli +
DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..
-
-
DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
x
sistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
x
número atômico, estrutura eletrônica, níveis de energia
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
-
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
X
[ESTADO QUÂNTICO]
Espaço de fases ou espaço fásico é definido como o espaço formado pelas posições generalizadas e seus momentos conjugados correspondentes. Se emprega no contexto da mecânica lagrangiana e a mecânica hamiltoniana. Usualmente se designa o espaço fásico ou uma parte dele por Γ (gamma maiúscula). Fisicamente cada ponto do espaço fásico representa um possível estado do sistema mecânico.
Em física estatística se usam distribuições de probabilidade definidas sobre o espaço fásico. Partindo de certo subconjunto das distribuições de probabilidade de um espaço fásico pode construir-se uma estrutura de espaço de Hilbert. Estes espaços de Hilbert de um sistema clássico são a base para os espaços de Hilbert que aparecem na mecânica quântica.
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+ FUNÇÃO TÉRMICA.
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
número atômico, estrutura eletrônica, níveis de energia
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
X
Espaço de fases ou espaço fásico é definido como o espaço formado pelas posições generalizadas e seus momentos conjugados correspondentes. Se emprega no contexto da mecânica lagrangiana e a mecânica hamiltoniana. Usualmente se designa o espaço fásico ou uma parte dele por Γ (gamma maiúscula). Fisicamente cada ponto do espaço fásico representa um possível estado do sistema mecânico.
Em física estatística se usam distribuições de probabilidade definidas sobre o espaço fásico. Partindo de certo subconjunto das distribuições de probabilidade de um espaço fásico pode construir-se uma estrutura de espaço de Hilbert. Estes espaços de Hilbert de um sistema clássico são a base para os espaços de Hilbert que aparecem na mecânica quântica.
Espaço de fases na mecânica clássica[editar | editar código-fonte]
Em mecânica clássica o espaço de fases é uma construção matemática a partir do espaço de configuração. Concretamente um espaço de fases adequado para um sistema com um número finito de graus de libertade é um fibrado tangente do espaço de configuração do sistema mecânico. Esse fibrado tangente construído dessa maneira pode ainda ser dotado de uma topologia simplética onde podem formular-se convenientemente os teoremas da mecânica hamiltoniana.
Um dos teoremas clássicos sobre espaços de fases é o teorema de Liouville, segundo o qual uma nuvem de pontos distribuídos de acordo com uma densidade de probabilidade que represente um estado de equilíbrio macroscópico ρ(pi,qi) deve ser invariável no tempo.
Além disto cada hamiltoniano H definido sobre um espaço de fases está associado a um conjunto de trajetórias de evolução temporal. O conjunto de trajetórias constitui uma foliação unidimensional do espaço de fases que recobre quase todo o espaço de fases (concretamente todo o espaço de fases, salvo um conjunto de medida nula), este último equivale a que o espaço pode ser descomposto em trajetórias que não se intersectam.
Em mecânica clássica o espaço de fases é uma construção matemática a partir do espaço de configuração. Concretamente um espaço de fases adequado para um sistema com um número finito de graus de libertade é um fibrado tangente do espaço de configuração do sistema mecânico. Esse fibrado tangente construído dessa maneira pode ainda ser dotado de uma topologia simplética onde podem formular-se convenientemente os teoremas da mecânica hamiltoniana.
Um dos teoremas clássicos sobre espaços de fases é o teorema de Liouville, segundo o qual uma nuvem de pontos distribuídos de acordo com uma densidade de probabilidade que represente um estado de equilíbrio macroscópico ρ(pi,qi) deve ser invariável no tempo.
Além disto cada hamiltoniano H definido sobre um espaço de fases está associado a um conjunto de trajetórias de evolução temporal. O conjunto de trajetórias constitui uma foliação unidimensional do espaço de fases que recobre quase todo o espaço de fases (concretamente todo o espaço de fases, salvo um conjunto de medida nula), este último equivale a que o espaço pode ser descomposto em trajetórias que não se intersectam.
Espaço de fases em mecânica quântica[editar | editar código-fonte]
Uma das características distintas da mecânica quântica é que o estado físico de um sistema não determina o resultado de qualquer medida que possa fazer-se sobre ele. Em termos mais simples, o resultado de uma medida sobre dois sistemas quânticos que tenham o mesmo estado físico nem sempre resulta nos mesmos resultados. Assim uma teoria como a mecânica quântica que trata de descrever a evolução temporal dos sistemas físicos só pode prever a probabilidade de que ao medir uma determinada grandeza física se obtenha determinado valor. Isto quer dizer que a mecânica quântica realmente é uma teoria que explica como varia a distribuição de probabilidade das possíveis medidas de um sistema (entre duas medições consecutivas, já que no instante da medida se produz um colapso da função de onda aleatório).
O estado quântico de um sistema pelas razões anteriormente expostas não se parece em nada ao estado clássico de uma partícula ou um sistema de partículas. De fato o estado quântico de um sistema é representável mediante uma função de onda:
]X
Uma das características distintas da mecânica quântica é que o estado físico de um sistema não determina o resultado de qualquer medida que possa fazer-se sobre ele. Em termos mais simples, o resultado de uma medida sobre dois sistemas quânticos que tenham o mesmo estado físico nem sempre resulta nos mesmos resultados. Assim uma teoria como a mecânica quântica que trata de descrever a evolução temporal dos sistemas físicos só pode prever a probabilidade de que ao medir uma determinada grandeza física se obtenha determinado valor. Isto quer dizer que a mecânica quântica realmente é uma teoria que explica como varia a distribuição de probabilidade das possíveis medidas de um sistema (entre duas medições consecutivas, já que no instante da medida se produz um colapso da função de onda aleatório).
O estado quântico de um sistema pelas razões anteriormente expostas não se parece em nada ao estado clássico de uma partícula ou um sistema de partículas. De fato o estado quântico de um sistema é representável mediante uma função de onda:
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
A relação mais próxima entre espaço fásico e função de onda é que o quadrado do módulo da função de onda está relacionado com uma distribuição de probabilidade definida sobre o espaço fásico. Isto significa que, para construir o conjunto de estados quânticos ou espaço de Hilbert de certos sistemas quânticos, pode considerar-se inicialmente o espaço fásico que se usaria em sua descrição clássica e considerar o conjunto de funções de quadrado integrável sobre o espaço fásico, a este tipo de procedimento se conhece como quantização.
Na mecânica clássica, a função de Lagrange, lagrangiana (português brasileiro) ou lagrangiano (português europeu) () de um sistema é uma função expressa em termos das coordenadas generalizadas , da taxa de variação dessas coordenadas (velocidades generalizadas) e do tempo t, e dada matematicamente pela diferença entre a energia cinética () e a energia potencial generalizada () do sistema:
- X
A relação mais próxima entre espaço fásico e função de onda é que o quadrado do módulo da função de onda está relacionado com uma distribuição de probabilidade definida sobre o espaço fásico. Isto significa que, para construir o conjunto de estados quânticos ou espaço de Hilbert de certos sistemas quânticos, pode considerar-se inicialmente o espaço fásico que se usaria em sua descrição clássica e considerar o conjunto de funções de quadrado integrável sobre o espaço fásico, a este tipo de procedimento se conhece como quantização.
Na mecânica clássica, a função de Lagrange, lagrangiana (português brasileiro) ou lagrangiano (português europeu) () de um sistema é uma função expressa em termos das coordenadas generalizadas , da taxa de variação dessas coordenadas (velocidades generalizadas) e do tempo t, e dada matematicamente pela diferença entre a energia cinética () e a energia potencial generalizada () do sistema:
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Por padrão a energia potencial é função apenas das coordenadas generalizadas (sistemas conservativos) e/ou do tempo, contudo, a exemplo do que observa-se para o caso eletromagnético, quando na forma adequada, admite-se o uso de um potencial "generalizado", esse função também das velocidades generalizadas. O potencial eletromagnético generalizado[1][Ref. 3] permite a descrição de partículas elétricas imersas em campos eletromagnéticos via Mecânica de Lagrange, a exemplo. Forças dissipativas proporcionais às velocidades generalizadas também são admissíveis via potenciais dissipativos, a exemplo o potencial dissipativo de Rayleigh.[2][3] [Ref. 3]
A lagrangiana é termo central na integral temporal que define o que se denomina em Física por ação. Diferente da Mecânica de Newton, junto com o princípio de Hamilton da ação em extremo, a lagrangiana e a Mecânica de Lagrange definem toda a dinâmica de um sistema sem recorrer a vetores e diagramas vetoriais, fazendo-o de forma a usar essencialmente funções escalares. Nesses termos a lagrangiana porta-se como uma equação fundamental do sistema a qual associa-se, encerrando em si todas as informações acerca do sistema. Pode-se pois, a partir dela e do formalismo atrelado à Mecânica de Lagrange, obter qualquer informação desejada acerca do sistema. A lagrangiana possui dimensões de energia, joules no S.I..[Ref. 1][Ref. 2][Ref. 3]
Associado à lagrangiana de um sistema, via Transformada de Legendre, tem-se o hamiltoniano do sistema, essa uma função das coordenadas generalizadas , dos momentos conjugados generalizados e do tempo t. O Hamiltoniano , definido por H = T + U, também caracteriza uma equação fundamental, e juntamente com o formalismo da Mecânica de Hamilton, constitui formalismo alternativo plenamente equivalente ao de Lagrange no que tange à descrição da dinâmica do sistema.[Ref. 2] Tais formalismos encontram importante aplicação também dentro da relatividade.[Ref. 4]
Embora amplamente aplicada ao campo da dinâmica de energia e matéria, o cálculo variacional não limita o raciocínio à campos específicos da Física. Diversos problemas nas mais variadas áreas mostram-se suscetíveis ao tratamento similar.
Por padrão a energia potencial é função apenas das coordenadas generalizadas (sistemas conservativos) e/ou do tempo, contudo, a exemplo do que observa-se para o caso eletromagnético, quando na forma adequada, admite-se o uso de um potencial "generalizado", esse função também das velocidades generalizadas. O potencial eletromagnético generalizado[1][Ref. 3] permite a descrição de partículas elétricas imersas em campos eletromagnéticos via Mecânica de Lagrange, a exemplo. Forças dissipativas proporcionais às velocidades generalizadas também são admissíveis via potenciais dissipativos, a exemplo o potencial dissipativo de Rayleigh.[2][3] [Ref. 3]
A lagrangiana é termo central na integral temporal que define o que se denomina em Física por ação. Diferente da Mecânica de Newton, junto com o princípio de Hamilton da ação em extremo, a lagrangiana e a Mecânica de Lagrange definem toda a dinâmica de um sistema sem recorrer a vetores e diagramas vetoriais, fazendo-o de forma a usar essencialmente funções escalares. Nesses termos a lagrangiana porta-se como uma equação fundamental do sistema a qual associa-se, encerrando em si todas as informações acerca do sistema. Pode-se pois, a partir dela e do formalismo atrelado à Mecânica de Lagrange, obter qualquer informação desejada acerca do sistema. A lagrangiana possui dimensões de energia, joules no S.I..[Ref. 1][Ref. 2][Ref. 3]
Associado à lagrangiana de um sistema, via Transformada de Legendre, tem-se o hamiltoniano do sistema, essa uma função das coordenadas generalizadas , dos momentos conjugados generalizados e do tempo t. O Hamiltoniano , definido por H = T + U, também caracteriza uma equação fundamental, e juntamente com o formalismo da Mecânica de Hamilton, constitui formalismo alternativo plenamente equivalente ao de Lagrange no que tange à descrição da dinâmica do sistema.[Ref. 2] Tais formalismos encontram importante aplicação também dentro da relatividade.[Ref. 4]
Embora amplamente aplicada ao campo da dinâmica de energia e matéria, o cálculo variacional não limita o raciocínio à campos específicos da Física. Diversos problemas nas mais variadas áreas mostram-se suscetíveis ao tratamento similar.
Exemplos[editar | editar código-fonte]
Mecânica[editar | editar código-fonte]
- Partícula livre
Uma partícula livre move-se em ausência de força resultante, idealmente em ausência de força aplicada. Logo sua lagrangiana define-se apenas por sua energia cinética em caso limite.
X
- Partícula livre
Uma partícula livre move-se em ausência de força resultante, idealmente em ausência de força aplicada. Logo sua lagrangiana define-se apenas por sua energia cinética em caso limite.
X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde, conforme convenção,
X
onde, conforme convenção,
X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
de onde, derivando-se:
Quadrando-se as velocidades generalizadas e com o auxílio de algumas relações trigonométricas tem-se pois que:
X
de onde, derivando-se:
Quadrando-se as velocidades generalizadas e com o auxílio de algumas relações trigonométricas tem-se pois que:
X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
- Máquina de Atwood
Na máquina de Atwood, considerando g a aceleração da gravidade, M1 a massa da esquerda e M2 a massa da direita, a energia potencial do sistema escreve-se:
,
X
- Máquina de Atwood
Na máquina de Atwood, considerando g a aceleração da gravidade, M1 a massa da esquerda e M2 a massa da direita, a energia potencial do sistema escreve-se:
,
X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
uma vez adotado o nível de referência como sendo uma linha horizontal a passar pelo centro do disco. Nessa situação x e y representam os tamanhos em suspensão da corda que sustentam respectivamente as massas M1 e M2.
Há um vínculo entre x e y de tal forma que é uma constante, o tamanho total de corda em suspensão. Nesses termos, basta uma coordenada generalizada para descrever-se o problema, à escolha, x, e reescreve-se a energia potencial gravitacional como:
X
uma vez adotado o nível de referência como sendo uma linha horizontal a passar pelo centro do disco. Nessa situação x e y representam os tamanhos em suspensão da corda que sustentam respectivamente as massas M1 e M2.
Há um vínculo entre x e y de tal forma que é uma constante, o tamanho total de corda em suspensão. Nesses termos, basta uma coordenada generalizada para descrever-se o problema, à escolha, x, e reescreve-se a energia potencial gravitacional como:
X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
e a função de Lagrange escreve-se:
-
-
- X
e a função de Lagrange escreve-se:
-
-
- X
-
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
-
-
que encerra em si toda informação necessária ao cálculo da dinâmica do sistema.
Seguindo-se com o formalismo de Lagrange, tem-se que a equação de movimento deve satisfazer à equação de Lagrange:
.
X
que encerra em si toda informação necessária ao cálculo da dinâmica do sistema.
Seguindo-se com o formalismo de Lagrange, tem-se que a equação de movimento deve satisfazer à equação de Lagrange:
.
X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Neste caso há apenas uma coordenada generalizada, qi = x. Determinando-se as derivadas tem-se:
X
Neste caso há apenas uma coordenada generalizada, qi = x. Determinando-se as derivadas tem-se:
X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
X
X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
X
X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Levando os resultados à equação de Lagrange tem-se a equação diferencial para o sistema:
X
Levando os resultados à equação de Lagrange tem-se a equação diferencial para o sistema:
X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde a é a aceleração das massas. Tal equação é análoga à obtida via aplicações diretas da lei de Newton conforme descrito em artigo específico, conforme esperado.
A equação horária para x obtém-se com facilidade doravante mediante integração, sendo a resposta análoga à de um movimento retilíneo uniformemente variado com aceleração constante :
X
onde a é a aceleração das massas. Tal equação é análoga à obtida via aplicações diretas da lei de Newton conforme descrito em artigo específico, conforme esperado.
A equação horária para x obtém-se com facilidade doravante mediante integração, sendo a resposta análoga à de um movimento retilíneo uniformemente variado com aceleração constante :
X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
com e correspondendo a constantes, respectivamente o comprimento em suspensão inicial da corda para a massa M1 e a velocidade descendente inicial (no sentido de x crescente) da massa M1, determinados no instante em que zera-se o tempo (t=0s).
O teorema de Liouville é um resultado da mecânica hamiltoniana sobre a evolução temporal de um sistema mecânico. Considera-se um conjunto de partículas com condições iniciais próximas que podem ser representadas no espaço de fases por uma região conexa, a qual, apesar de se expandir e contrair a medida que cada partícula evolua, manterá invariante seu volume.
Há também resultados matemáticos relacionados em topologia simplética e teoria ergódica.
Consideremos uma região do espaço fásico que evolua com o tempo ao deslocar-se sobre sua trajetória. Cada um de seus pontos transforma-se ao longo do tempo em uma região de localizada forma diferente, a qual se situa em outra parte do espaço fásico. O teorema de Liouville afirma que, apesar da translação e a alteração de forma, o "volume" total desta região permanecerá invariante. Além disso, devido à continuidade da evolução temporal, se a região for conexa inicialmente, seguirá sendo conexa todo o tempo.
Quase todas as demostrações usam o fato de que a evolução temporal de uma "nuvem" de pontos no espaço fásico é de fato uma transformação canônica que alterará a forma e posição de tal nuvem, ainda que mantenha seu volume total.
com e correspondendo a constantes, respectivamente o comprimento em suspensão inicial da corda para a massa M1 e a velocidade descendente inicial (no sentido de x crescente) da massa M1, determinados no instante em que zera-se o tempo (t=0s).
O teorema de Liouville é um resultado da mecânica hamiltoniana sobre a evolução temporal de um sistema mecânico. Considera-se um conjunto de partículas com condições iniciais próximas que podem ser representadas no espaço de fases por uma região conexa, a qual, apesar de se expandir e contrair a medida que cada partícula evolua, manterá invariante seu volume.
Há também resultados matemáticos relacionados em topologia simplética e teoria ergódica.
Consideremos uma região do espaço fásico que evolua com o tempo ao deslocar-se sobre sua trajetória. Cada um de seus pontos transforma-se ao longo do tempo em uma região de localizada forma diferente, a qual se situa em outra parte do espaço fásico. O teorema de Liouville afirma que, apesar da translação e a alteração de forma, o "volume" total desta região permanecerá invariante. Além disso, devido à continuidade da evolução temporal, se a região for conexa inicialmente, seguirá sendo conexa todo o tempo.
Quase todas as demostrações usam o fato de que a evolução temporal de uma "nuvem" de pontos no espaço fásico é de fato uma transformação canônica que alterará a forma e posição de tal nuvem, ainda que mantenha seu volume total.
Demonstração direta[editar | editar código-fonte]
Uma forma de ver provada que a evolução temporal é uma transformação canônica, fato relativamente perceptível, e a partir daí calcular diretamente o determinante de tal alteração de coordenadas, é provar que de fato o determinante de tal transformação é igual a 1, o qual prova a invariância do volume.
Uma forma de ver provada que a evolução temporal é uma transformação canônica, fato relativamente perceptível, e a partir daí calcular diretamente o determinante de tal alteração de coordenadas, é provar que de fato o determinante de tal transformação é igual a 1, o qual prova a invariância do volume.
Demonstração baseada na forma simplética[editar | editar código-fonte]
Outra forma de provar o teorema é ter em conta que a forma de volume do espaço fásico é o n-ésimo produto da forma simplética, e que está de acordo com o teorema de Darboux, expressando-se como produto de pares de variáveis canonicamente conjugadas:
X
Outra forma de provar o teorema é ter em conta que a forma de volume do espaço fásico é o n-ésimo produto da forma simplética, e que está de acordo com o teorema de Darboux, expressando-se como produto de pares de variáveis canonicamente conjugadas:
X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
De onde segue que o determinante da transformação é igual a 1 e, portanto:
- X
De onde segue que o determinante da transformação é igual a 1 e, portanto:
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Essa última expressão é essencialmente o enunciado do teorema de Liouville.
Essa última expressão é essencialmente o enunciado do teorema de Liouville.
Equação de Liouville[editar | editar código-fonte]
O teorema de Liouville pode ser reescrito em termos do colchete de Poisson. Essa forma alternativa, conhecida como equação de Liouville, vem a ser dada por:
- X
O teorema de Liouville pode ser reescrito em termos do colchete de Poisson. Essa forma alternativa, conhecida como equação de Liouville, vem a ser dada por:
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
ou em termos do operador de Liouville, também chamado "Liouvilliano":
- X
ou em termos do operador de Liouville, também chamado "Liouvilliano":
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
que leva à forma:
- X
que leva à forma:
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Mecânica quântica[editar | editar código-fonte]
Em mecânica quântica existe um resultado análogo ao teorema de Liouville que descreve a evolução de um estado misto. De fato, pode-se chegar à versão mecânico-quântica deste resultado mediante a simples quantização canônica. Aplicando esse procedimento formal, chegamos ao análogo quântico do teorema de Liouville:
- X
Em mecânica quântica existe um resultado análogo ao teorema de Liouville que descreve a evolução de um estado misto. De fato, pode-se chegar à versão mecânico-quântica deste resultado mediante a simples quantização canônica. Aplicando esse procedimento formal, chegamos ao análogo quântico do teorema de Liouville:
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Onde ρ é a matriz densidade. Quando se aplica o resultado ao valor esperado de um observável, a correspondente equação dada pelo teorema de Ehrenfest toma a forma:
- X
Onde ρ é a matriz densidade. Quando se aplica o resultado ao valor esperado de um observável, a correspondente equação dada pelo teorema de Ehrenfest toma a forma:
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Onde é um observável.
A física estatística é o ramo da física que usa métodos da teoria das probabilidades e estatística e, particularmente, as ferramentas matemáticas para lidar com grandes populações e aproximações, na solução de problemas físicos. Pode descrever uma grande variedade de campos com uma natureza inerentemente estocástica. Suas aplicações incluem muitos problemas nos campos da física, biologia, química, neurologia e até mesmo em algumas ciências sociais, como a sociologia. Seu principal objetivo é esclarecer as propriedades da matéria sob conjuntos, em termos de leis físicas que regem o movimento atômico.[1]
Em particular, a mecânica estatística desenvolve os resultados fenomenológicos da termodinâmica a partir de uma análise probabilística dos sistemas de base microscópica. Historicamente, um dos primeiros tópicos da física onde foram aplicados métodos estatísticos foi o campo da mecânica, que se preocupa com o movimento de partículas ou objetos quando submetidos a uma força.
Onde é um observável.
A física estatística é o ramo da física que usa métodos da teoria das probabilidades e estatística e, particularmente, as ferramentas matemáticas para lidar com grandes populações e aproximações, na solução de problemas físicos. Pode descrever uma grande variedade de campos com uma natureza inerentemente estocástica. Suas aplicações incluem muitos problemas nos campos da física, biologia, química, neurologia e até mesmo em algumas ciências sociais, como a sociologia. Seu principal objetivo é esclarecer as propriedades da matéria sob conjuntos, em termos de leis físicas que regem o movimento atômico.[1]
Em particular, a mecânica estatística desenvolve os resultados fenomenológicos da termodinâmica a partir de uma análise probabilística dos sistemas de base microscópica. Historicamente, um dos primeiros tópicos da física onde foram aplicados métodos estatísticos foi o campo da mecânica, que se preocupa com o movimento de partículas ou objetos quando submetidos a uma força.
Mecânica estatística[editar | editar código-fonte]
Ver artigo principal: Mecânica estatística
A mecânica estatística fornece um quadro que relaciona as propriedades microscópicas de átomos e moléculas com as propriedades macroscópicas ou extensivas de materiais que podem ser observados na vida cotidiana. Portanto, ela explica a termodinâmica como um resultado natural da estatística, mecânica clássica e mecânica quântica ao nível microscópico. Por causa desta história, a física estatística é muitas vezes considerada como sinônimo de mecânica estatística ou termodinâmica estatística.
Uma das equações mais importantes da mecânica estatística (análogo à F = ma em mecânica, ou a equação de Schrödinger na mecânica quântica) é a definição da função de partição Z, que é essencialmente uma soma ponderada de todos os possíveis estados q disponíveis para um sistema .
X

A mecânica estatística fornece um quadro que relaciona as propriedades microscópicas de átomos e moléculas com as propriedades macroscópicas ou extensivas de materiais que podem ser observados na vida cotidiana. Portanto, ela explica a termodinâmica como um resultado natural da estatística, mecânica clássica e mecânica quântica ao nível microscópico. Por causa desta história, a física estatística é muitas vezes considerada como sinônimo de mecânica estatística ou termodinâmica estatística.
Uma das equações mais importantes da mecânica estatística (análogo à F = ma em mecânica, ou a equação de Schrödinger na mecânica quântica) é a definição da função de partição Z, que é essencialmente uma soma ponderada de todos os possíveis estados q disponíveis para um sistema .
X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
V
onde é a constante de Boltzmann, T é a temperatura e E(q) é a energia do estado q. Além disso, a probabilidade de um determinado estado q ocorrer é dada por
X
V
onde é a constante de Boltzmann, T é a temperatura e E(q) é a energia do estado q. Além disso, a probabilidade de um determinado estado q ocorrer é dada por
X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Aqui, vemos que os estados de energia muito alta têm pouca probabilidade de ocorrência, um resultado que é consistente com a intuição.
A abordagem estatística pode funcionar bem em sistemas clássicos quando o número de graus de liberdade (e assim o número de variáveis) é tão grande que a solução exata não é possível, ou não é realmente útil. A mecânica estatística também pode descrever o trabalho na dinâmica não-linear, teoria do caos, física térmica, dinâmica dos fluidos (particularmente nos números de Knudsen elevados) e física de plasmas.
Embora alguns problemas em física estatística possam ser resolvidos analiticamente por meio de aproximações e expansões, as pesquisas mais atuais utilizam o poder de processamento de computadores modernos para simular ou aproximar soluções. Uma abordagem comum para problemas estatísticos é usar uma simulação de Monte Carlo para produzir uma ideia da dinâmica de um sistema complexo.
Como os plasmas são muito bons condutores, os potenciais elétricos têm um papel importante. O potencial médio que existe no espaço entre partículas carregadas, independentemente da questão de como ele pode ser medido, é chamado de "potencial de plasma" ou "potencial do espaço". Se um eletrodo é inserido em um plasma, o seu potencial em geral ficará consideravelmente abaixo do potencial do plasma, devido à chamada bainha de Debye. A boa condutividade elétrica dos plasmas faz com que os seus campos elétricos sejam muito pequenos. Disso resulta o importante conceito de "quase neutralidade", que diz que a densidade das cargas negativas é aproximadamente igual à das cargas positivas para grandes volumes de plasma (ne = <Z>ni), mas na escala do comprimento de Debye pode haver desequilíbrio de cargas. No caso especial em que camadas duplas são formadas, a separação das cargas pode se estender por algumas dezenas de comprimentos de Debye.
A magnitude dos potenciais e campos elétricos pode ser determinada por outros meios do que simplesmente encontrando-se a densidade de carga resultante. Um exemplo comum é assumir que os elétrons satisfazem a relação de Boltzmann:
- .
- X
- V
Aqui, vemos que os estados de energia muito alta têm pouca probabilidade de ocorrência, um resultado que é consistente com a intuição.
A abordagem estatística pode funcionar bem em sistemas clássicos quando o número de graus de liberdade (e assim o número de variáveis) é tão grande que a solução exata não é possível, ou não é realmente útil. A mecânica estatística também pode descrever o trabalho na dinâmica não-linear, teoria do caos, física térmica, dinâmica dos fluidos (particularmente nos números de Knudsen elevados) e física de plasmas.
Embora alguns problemas em física estatística possam ser resolvidos analiticamente por meio de aproximações e expansões, as pesquisas mais atuais utilizam o poder de processamento de computadores modernos para simular ou aproximar soluções. Uma abordagem comum para problemas estatísticos é usar uma simulação de Monte Carlo para produzir uma ideia da dinâmica de um sistema complexo.
Como os plasmas são muito bons condutores, os potenciais elétricos têm um papel importante. O potencial médio que existe no espaço entre partículas carregadas, independentemente da questão de como ele pode ser medido, é chamado de "potencial de plasma" ou "potencial do espaço". Se um eletrodo é inserido em um plasma, o seu potencial em geral ficará consideravelmente abaixo do potencial do plasma, devido à chamada bainha de Debye. A boa condutividade elétrica dos plasmas faz com que os seus campos elétricos sejam muito pequenos. Disso resulta o importante conceito de "quase neutralidade", que diz que a densidade das cargas negativas é aproximadamente igual à das cargas positivas para grandes volumes de plasma (ne = <Z>ni), mas na escala do comprimento de Debye pode haver desequilíbrio de cargas. No caso especial em que camadas duplas são formadas, a separação das cargas pode se estender por algumas dezenas de comprimentos de Debye.
A magnitude dos potenciais e campos elétricos pode ser determinada por outros meios do que simplesmente encontrando-se a densidade de carga resultante. Um exemplo comum é assumir que os elétrons satisfazem a relação de Boltzmann:
- .
- X
- V
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Diferenciando-se esta relação, obtém-se um meio para calcular o campo elétrico a partir da densidade:
- .
- X
Diferenciando-se esta relação, obtém-se um meio para calcular o campo elétrico a partir da densidade:
- .
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
É possível produzir um plasma que não seja quase neutro. Um feixe de elétrons, por exemplo, só tem cargas negativas. A densidade de um plasma não neutro deve geralmente ser muito baixa, pois de outra forma ele será dissipado pela força eletrostática de repulsão.
Em plasmas astrofísicos, a triagem Debye (atenuação do campo elétrico provocada pela presença de portadores de carga móveis) impede que os campos elétricos afetem diretamente o plasma por grandes distâncias, isto é, maiores do que o comprimento de Debye. Mas a existência de partículas carregadas faz com que o plasma gere e seja afetado por campos magnéticos. Isto pode causar (e efetivamente causa) um comportamento extremamente complexo, como a geração de camadas duplas no plasma, um objeto que separa as cargas por algumas dezenas de comprimentos de Debye. A dinâmica de plasmas interagindo com campos magnéticos externos e auto-gerados é estudada na disciplina acadêmica de magnetoidrodinâmica.
É possível produzir um plasma que não seja quase neutro. Um feixe de elétrons, por exemplo, só tem cargas negativas. A densidade de um plasma não neutro deve geralmente ser muito baixa, pois de outra forma ele será dissipado pela força eletrostática de repulsão.
Em plasmas astrofísicos, a triagem Debye (atenuação do campo elétrico provocada pela presença de portadores de carga móveis) impede que os campos elétricos afetem diretamente o plasma por grandes distâncias, isto é, maiores do que o comprimento de Debye. Mas a existência de partículas carregadas faz com que o plasma gere e seja afetado por campos magnéticos. Isto pode causar (e efetivamente causa) um comportamento extremamente complexo, como a geração de camadas duplas no plasma, um objeto que separa as cargas por algumas dezenas de comprimentos de Debye. A dinâmica de plasmas interagindo com campos magnéticos externos e auto-gerados é estudada na disciplina acadêmica de magnetoidrodinâmica.